Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer: recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways.
نویسندگان
چکیده
Prolactin (PRL) receptors (PRLRs) have been considered selective activators of Janus tyrosine kinase (Jak)2 but not Jak1, Jak3, or Tyk2. We now report marked PRL-induced tyrosine phosphorylation of Jak1, in addition to Jak2, in a series of human breast cancer cell lines, including T47D, MCF7, and SKBR3. In contrast, PRL did not activate Jak1 in immortalized, noncancerous breast epithelial lines HC11, MCF10A, ME16C, and HBL-100, or in CWR22Rv1 prostate cancer cells or MDA-MB-231 breast cancer cells. However, introduction of exogenous PRLR into MCF10A, ME16C, or MDA-MB-231 cells reconstituted both PRL-Jak1 and PRL-Jak2 signals. In vitro kinase assays verified that PRL stimulated enzymatic activity of Jak1 in T47D cells, and PRL activated Jak1 and Jak2 with indistinguishable time and dose kinetics. Relative Jak2 deficiency did not cause PRLR activation of Jak1, because overexpression of Jak2 did not interfere with PRL activation of Jak1. Instead, PRL activated Jak1 through a Jak2-dependent mechanism, based on disruption of PRL activation of Jak1 after Jak2 suppression by 1) lentiviral delivery of Jak2 short hairpin RNA, 2) adenoviral delivery of dominant-negative Jak2, and 3) AG490 pharmacological inhibition. Finally, suppression of Jak1 by lentiviral delivery of Jak1 short hairpin RNA blocked PRL activation of ERK and signal transducer and activator of transcription (Stat)3 and suppressed PRL activation of Jak2, Stat5a, Stat5b, and Akt, as well as tyrosine phosphorylation of PRLR. The data suggest that PRL activation of Jak1 represents a novel, Jak2-dependent mechanism that may serve as a regulatory switch leading to PRL activation of ERK and Stat3 pathways, while also serving to enhance PRL-induced Stat5a/b and Akt signaling.
منابع مشابه
Effect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line
Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...
متن کاملThe Jak-Stat Signaling Pathway of Interferons System: Snapshots
Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...
متن کاملJAK-STAT pathway and JAK inhibitors: a primer for dermatologists
Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملInhibition of the janus kinase family increases extracellular signal-regulated kinase 1/2 phosphorylation and causes endoreduplication.
The role of Janus-activated kinase (JAK) signaling in cell cycle transit and maintenance of genomic stability was determined in HL-60 myeloblastic leukemia cells. Inhibition of JAKs, all JAKs (JAK1, JAK2, JAK3, and tyrosine kinase 2), JAK2, or JAK3, caused a significant reduction in cell growth with a major G2-M arrest evident 24 hours after treatment. Targeting all JAKs also caused endoredupli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular endocrinology
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2007